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ABSTRACT 

This  paper  describes  a  model of the general  circulation of the earth's  atmosphere  which  has been developed 
and experimented  with,  since 1964, at  the National  Center  for  Atmospheric  Research  (NCAR),  Boulder,  &lo.  A 
distinguishing feature of the NCAR  model is that  the vertical  coordinate is height rather  than pressure,  though 
hydrostatic  equilibrium is qaintained in the system. In  fact,  the dynamical  framework of the model is very  similar 
to  the  one proposed  by L. F. Richardson  in 1922. 

Various  physical  processes  in the atmosphere,  such as energy transfer  due to solar and  terrestrial  radiation, 
small-scale turbulence and convection, etc., are incorporated  in the model. An explicit prediction of the moisture 
field is avoided.  Instead, it is assumed that the atmosphere is completely saturated  by  water vapor.  Thus, the release 
of latent  heat of ahdensation can  be  computed. In addition to a  description of the model, the equations  for the zonal 
mean and eddy  energy are presented.  Finally,  a  baroclinic  stability  analysis of the model is made in order to gain 
an insight into  the finite-difference formulation of the present  model. Long term (over 100 days)  numerical  integra- 
tions  are being  performed  successfully  with a two-layer verbion of the present  model.  Details of finite-difference 
schemes and  the results of numerical  calculations will  be described in a separate  article. 

"Perhaps some day  in  the  dim  future it will be possible to advance the 
computations  faster than  the weather  advances  and a t  a  cost less than  the 
saving to mankind  due  to the information  gained. But  that is  a  dream." [From 
Weather Prediction by Numerical Process by L. F. Richardson, 1922.1 
."""_"""""""""""""""""""""""""""""""""""""""""""""""""""""""" 

1. INTRODUCTION 

The  purpose of this  paper is to describe a model of the 
general circulation of the earth's  atmosphere which has 
been developed and  experimented  with a t  the  National 
Center for  Atmospheric  Research  (NCAR),  Boulder, 
3010. 

Following the successful development of numerical 
weather prediction  techniques a t  the  Institute tor Ad- 
vanced Study  in  Princeton, Phillips [34] first attempted  a 
numerical simulation of the general  circulation. His work 

was based on a two-level quasi-geostrophic  model  in  a 
zonally periodic channel on a p-plane. The experiment 
demonstrated that certain gross properties of the atmos- 
pheric motion  including the energy-transformation proc- 
esses can  be  simulated  numerically  in the model. 

To remove the quasi-geostrophic  assumption employed 
in  Phillips' model, Smagorinsky [43] formulated  a two-level 
model by using the  Eulerian equations of motion  within a 
spherical  zonal  strip. He succeeded in  pedorming long- 
term  integrations of the  Eulerian equation model. 

Following these  earlier attempts, more  elaborate  types 
389 
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of general  circulation  experiments  using the  Eulerian equa- 
tions of motion and thermodynamic  equations were  de- 
signed and carried out  by  Leith [18], Mintz [28], and A. 
Arakawa 111. I n  these models various  physical processes 
in  the  atmosphere, such as energy  transfer  caused  by  solar 
and  terrestrial  radiation, small-scale turbulence  and con- 
vection, the release of latent  heat, etc., are simulated. 
Various  features of general  circulation  experiments  up to 
summer 1965 are discussed in  an  article  by  Gavrilin [IO] 
and also in  a report prepared by  the  Panel on Weather  and 
Climate  Modification [31]. The results of experiments 
based  on  more  sophisticated  models  have  recently been 
published by Smagorinsky,  Manabe,  and  Holloway [44] 
and  by  Manabe,  Smagorinsky,  end  Strickler 1221. 

In  the beginning of 1964, after  studying  the  character- 
istics of various  general  circulation  experiments thus  far 
reported, we decided to perform general  circulation ex- 
periments a t  NCAR using a  model which is  somewhat 
different  from  those described so far.  The purpose of this 
undertaking is to  construct a numerical  model of the 
atmosphere which is  simple but general  enough that in- 
creasingly refined methods of simulating  physical processes 
in the atmosphere,  such  as the  transport processes of heat 
and momentum, can be  incorporated as  they  are devel- 
oped,  and flexible enough that scientists from diverse 
fields can test their  hypotheses. 

A distinguishing feature of the  NCAR general  circula- 
tion  model’is that  the  vertical coordinate  is  height rather 
than pressure,  though  hydrostatic  equilibrium  is  main- 
tained  in the system. The use of pressure as  the vertical 
coordinate  in  the  hydrostatic  system  is  more common, 
since the  continuity equation  is  reduced to  a diagnostic 
equation  without  a  time  derivative  term.  However,  this 
advantage is offset by  a  disadvantage  in  the  handling of 
the lower boundary  conditions of the  system, since the 
earth’s  surface  usually  does not coincide  with  a  constant 
pressure  surface. In  order  to  eliminate  this  difficulty, 
Phillips [35] introduced  the so-called “a-coordinate”  sys- 
tem which has been adopted  in  the Smagorinsky-Manabe 
and Mintz-Arakawa models. Some of t’he advantages of 
using  height  as  the  vertical  coordinate  are that  the prog- 
nostic  equations  have  simpler  Iorms  than  those  in  the 
a-system,* and  the lower boundary  conditions may easily 
be  formulated. 

The dynamical  framework of the  NCAR model is there- 
fore  very  similar  to  the one proposed by Richardson [39]. 
Besides the difference in  the use of the vertical  coordinate, 
the NCAR model includes  various  physical processes in 
the atmosphere which have been formulated  somewhat 
differently from  those  incorporated  in  other  general cir- 
culation models. 

In Section 2 ,  the dyncbmical framework of the model is 

created  some  difficulties over steep  sloping terrain. In the equations of motion  in  the u- 
*It was  reported in 1451 that  computations of presure gradient on the u w d i n a t e  

system, the pressure gradient  is  computed  from two terms.  When  these  terms are eval- 
uated by finite  differences,  the  truncation  errors of two terms are not necessarily consistent 
with each  other  and conseqnently a large  error em be produced. 
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discussed. The basic  equations are all  written  in  spherical 
coordinates  in  order to  treat motions  in  both hemispheres. 
In Section 3, the upper  and lower boundary  conditions 
are  presented. In Section 4, the heating/cooling  produced 
by solar  and  terrestrial  radiation is discussed. On0 of the 
most important  heat sources in the atmosphere is the  latent 
heat released by condensation  in clouds. However, to 
simplify the formulation of the first version of the model, 
an explicit prediction of the moisture field is avoided. 
Inst,ead we assume that  the atmosphere is completely 
saturated  by  water vapor.  Therefore, the release of latent 
heat takes  place  in the region of ascending motion. The 
rate of condensation, however, is altered by multiplying a 
parameter. In Section 5, the energy  equations of the model 
are  derived, since little work has been published concern- 
ing the derivation of equations for  the zonal mean and 
eddy energy of various  forms  in the z-system. In Section 
6, a  baroclinic  stability  analysis of the model is  presented 
for  the case of a two-layer model in  order  to  gain  an  in- 
sight  into  the finite-difference formulation of the present 
model. In Section 7, a brief summary is made of numerical 
calculations performed successfully with a two-layer 
version of the present model. 

2. BASIC EQUATIONS 

Let us define the following symbols which appear fre- 
quently  in the  text. 

p=latitude (positive  northward) 
X=longitude (positive  eastward) 
z= height 
t=time 

V=horizontal velocity 

w=vertical  velocity 
p = pressure 
p =  density 
T= temperature 
a= l /p ,  specific volume 
g=acceleration  due to  gravity 
a=mean radius of the  earth 
Q=angular velocity of the  earth 
j = 2 Q  sin ‘p, Coriolis parameter 
R=gas  constant for dry air 
c,=specZc heat for dry air at  constant  pressure 
c,,=specific heat  for dry air at constant volume 

Y=cp/co 
K=R/cp,  Poisson’s constant for dry air 
F=frictional force per unit volume 

&=rate of heating per unit mass. 

u, v=longitudinal and  latitudinal  components of V 

(=c,- 8) 

FA, $’,=longitudinal and  meridional  components of F 

In  spherical  coordinates, X, ‘p, and z, the longitudinal 
and meridional  equations of motion  appropriate  to  the 
problem are 
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"- W P U ) -  a 1 aP 
at  V*(puV)--  (puw)-- - az a cos (p dX 

(2.2) 
where, for a scalar quantity A, 

v.Av=- 1 rq+b ( A v  cos cp) * (2.3) 
a cos (p ?P 1 

The  mathematical  approximations employed for the der- 
ivation of (2.1) and (2.2) have been discussed by  Phillips 
I371 

The mass  continuity  equation is 

The thermodynamic  equation may be expressed by 

"- d p -  "- dp P Q 

d t  YRT d  t  c,T 
where 

$=&v.v+w - az a 
and 

It is  assumed that  the atmosphere is in  hydrostatic 
equilibrium, i.e., 

" *-- p g .  az (2.8) 

The equation of state for  an  ideal  gas is 

p= pRT. (2.9) 

By  substituting equation (2.8) into  the left-hand  side of 
(2.4) and  then  integrating  the  resulting  equation  from z to 
the  top of the atmosphere, the height of which is  denoted 
by zT, we obtain the well-known pressure  tendency 
equation 

(2.10) 

where B=dp/d t  evaluated at  z=zT. In  deriving (2.10) it 
is assumed that 

w=o at z=zT. (2.11) 

This boundary  condition will be used throughout  the 
present work. 

The vertical  velocity w is  calculated  in  such a way that 
hydrostatic  equilibrium  is  always  maintained between 
p and p. In other words, the vertical velocity w must be 
evaluated to  satisfy  both (2.4) and (2.5) together  with 
the  hydrostatic  condition (2.8). The vertical  derivative 

of w may be obtained  from (2.4) in  the following form: 

By substituting (2.5) into (2.12) one finds that 

With  the  aid of (5.8), we rewrite (2.10) in  the form : 

(2.12) 

~ = B + J  

(2.13) 

(2.14) 

where 

(2.15) 

By  substituting (2.14) into (2.13) and  integrating  the 
resulting  equation  from z=O to some height z, we obtain 

where we assumed that 

w=O at z=O, (2.17) 

which is the lower boundary  condition on w used through- 
out  this work. 

In (2.16a)) the term B, the ,pressure  tendency a t  the 
top,  has been left  as an unknown.  This will be determined 
in  such  a way that (2.16a) satisfies the upper  boundary 
condition (2.11). This leads  to 

B= T O P  S" - d z - 1  CP & T d z + p - V d z  
1 dz * (2.16b) 
" - 

Y J o  P 

An equation  for w similar to (2.16) was derived by 
Richardson [39]. (See also [7] and [.!io].) In his derivation, 
however, it  was assumed that dpldt vanishes a t  the  top of 
the atmosphere z= Q) instead of the condition (2.11). 

The independent  variables of the system are X, cp, 2, 

and t .  The dependent  variables are  the longitudinal and 
latitudinal  components u and v of velocity which are 
predicted by (2.1) and (2.2); and the pressure p ,  which is 
predicted by (2.10) with the aid of (2.16). The vertical 
motion  is  computed from the diagnostic  equation (2.16). 
Temperature  and  density  are  computed  from  the  hydro- 
static relationship (2.8) with the use of the gas law (2.9). 

The longitudinal  and  meridional  components FA and 
F, of the eddy viscous force may be expressed in the 
following forms: 
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where KMH represents the horizontal  kinematic  eddy 
viscosity and 

v2=-.".- - 
a2 cos cp dcp 

The  last  three  terms in (2.18) represent  the  lateral fric- 
tional force. These  terms are derived by assuming that  the 
fluid is incompressible and that horizontal  variations of 
density  are neglected. Also  we  assumed that  the contri- 
butions from terms  containing w can  be neglected (see 
for example Goldstein [ l l ] ) .  In  the ac,tual  computations, 
we ignored the  last two terms  in (2.18) because  they  are, 
in general,  small  in  magnitude  compared  with that of the 
Laplacian  term. The longitudinal  and  latitudinal com- 
ponents T X  and T+, of Reynold's  stress may be expressed by 

(2.20) 

where K,, representas the  vertical  kinematic  eddy vis- 
c.osity. The magnitudes of KMH and KMv will be discussed 
in a  separat,e  paper,  together  with  the  results of computa- 
t.ions. 

The  heating  rate Q in (2.16a) consists of the following 
tdhree parts : 

&=&a+ Qc+ &d- (2.21) 

The  terms Qa and Qc are  the  heating  terms from radiational 
sources and  the release of latent  heat  by condensation, 
respectively.  These  terms will  be discussed in Section 4. 
The  term Qd is the  rate of heating/cooling due to eddy 
diffusion which may be expressed by 

(2.22) 

where KTx represents the horizontal  kinematic  thermal 
diffusivity and e denotes the  potential  temperature 

e=T (2.23) 

with p,=lOOO mb.  The  quantity h denotes the vertical 
flux of sensible heat which may  be expressed by 

(2.24) 

where KTv denotes  the  vertical  kinematic  thermal dif- 
fusivity and ycO is called the counter-gradient  constant. 
Deardorff [5] has suggested the use of a small  counter- 
gradient  constant  in (2.24) in  order to explain observed 
upward heat flux when the  vertical  gradient of 0 is slightly 
greater  or  equal  to zero. Therefore, the counter-gradient 
constant  shifts  the  point a t  which heat flux is eit,her up- 
ward or downward. The  heating processes other  than  by 
eddy diffusion  will  be described in  Section 4. Concerning 
tahe value of .ycG in (2.24), Deardorff [5] reported  that 

ycG=0.65X lO-"c. cm." However,  he  said that  the value 
of rcG will be  larger  than  that given above a t  levels where 
cloudiness prevails. In  the present calculations, it is 
assumed that yca=5X10-5 "C. cm.-I 

3. BOUNDARY  CONDITIONS 

At  the  top of the  atmosphere, z=zT, we assume in the 
upper  boundary  conditions that  the vertical motion,  the 
surface  stress  components, and  the sensible heat flux all 
vanish. Thus, 

w = n = T @ = h = O  a t  z=zT. (3.1) 

The effects of the  planetary frictional (Ekman)  layer 
are included in the model by  introducing  the vertical  eddy 
(subgrid scale) exchange processes for momentum  and 
heat.  The effects of the surface  boundary  (Prandtl)  layer 
are  simulated by  the lower boundary conditions  for the 
model in  order to  evaluate  surface  stress  and sensible heat 
flux at  the  earth's surface. The thickness of the surface 
boundary  layer is on t,he order of 50 m. It is assumed that 
the  eddy fluxes of momentum  and  heat  are  constant  with 
height  in the surface  boundary  layer.  The  horizontal  stress 
components  and t,he vertical flux of sensible heat in the 
surface boundary  layer  are expressed in the  customary 
fashion as follows: 

TX= C D p s U s v s  

T q =  CDpSvSvS a t  z=zs (3.2) 

h = - c p C D p s (  TS- T,)Vs 

evaluated a t  the  anemometer level z=zs located  usually 
near z=lO m. In (3.2) the  subscripts s for  the  quantities 
refer to those at  the anemometer level, T, represents the 
temperature of the  earth's surface, CD is the  drag co- 
efficient, and 

v, = J U R .  

The surface  stress and  the sensible heat flux in the 
planetary  frictional  layer have been expressed by .(2.20) 
and (2.24) respectively. It will be assumed that  the eddy 
fluxes of momentum  and  heat  are continuous a t  the  inter- 
face of the two boundary  layers.  Thus,  the lower boundary 
conditions of the problem are expressed in  the forms: 

7 
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Similar boundary conditions were  used by Kasahara [14] 
in his numerical experiments on hurricane formation. 

4. H E A T I N G / C O O L I N G  PROCESSES IN T H E   M O D E L  
ATMOSPHERE 

All energy of atmospheric motion is ultimately derived 
from incoming solar radiation. If directly reflected radi- 
ation is ignored, the atmosphere receives  from the sun 
2.0 cal. cm.-* min.-l, which is known as the solar constant 
[13]. Since the mean temperature of the atmosphere does 
not change appreciably from one year to  the next, the 
amount of energy received by t’he earth  must  be  sent back 
to outer space. A large portion of the outgoing  energy 
is emitted back in the form of infrared radiat,ion. 

Referring to  the heating rate Q of (2.21), let us divide the 
heating t.erm due to radiational sources Qa into two parts, 

Qa= Q a s S  Qae (4.1) 

where Qas denotes the  rat’e of heating  due to absorption 
of the solar insolation by water  vapor and Qae is the  rate 
of heatingJcooling due to infrared radiation. 

Let Fa, represent. the flux of energy of the direct solar 
radiation absorbed by mater vapor  in a vertical column 
extending from height z to  the  top of the atmosphere. 
The heating rate Qas is then  computed from 

According to Mugge and Moller [29], London [19], and 
McDonald [24], it is shown that 

F,,=a*[s(z) sec [lo..” cos [ (4.3) 

where x ( z )  denotes the pressure-corrected precipitable 
water (gm.lcrn.3 in a unit column  defined by 

(4.4) 

in mhich pto is the density of water  vapor  and pQ is a 
standard pressure (1013 mb.). To obtain a value of the 
water  vapor  content in  the atmosphere above z=zT, we 
assume that  the mixing ratio is constant with height. 
Then,  the pressure-corrected precipitable water (gm./cm.’) 
above z=zT is given approximately by 

(4.5) 

where eT, the vapor pressure measured in units of mb. at  
the tropopause, is determined by  the pressure pT  and the 
temperature a t  z=zT with assumed relative  humidity. 
According to London [19], the value of average relative 
humidity at  the tropopause i s  about 60 percent. We 
adopted this value for the  actual computations. 

In formula (4.3), [ denotes the sun’s zenith angle  which 
is expressed by 

cos t=sin p sin 6+cos p cos 6 cos h (4.6) 

where cp is the  latitude, 6 is  the sun’s declination, and h is 
the sun’s hour angle counting from 0 deg. at noon (1  hr. 
corresponds to 15 deg.). The value of 6 for any time of 
year  can be found in a nautical almanac. 

In (4.3), a* is a constant  and is given by a*=0.172 
after Mugge and Moller [29], and a*=0.149 after 
McDonald 1241. The difference between the two values is, 
according to  Manabe  and Moller [21], due  to  the  fact  that, 
McDonald did not  take  into account the contributions 
from  the absorption  bands at 2.7, 3.2, and 6 . 3 ~ .  Therefore, 
we adopted the value of Mugge and Moller [29]. 

The empirical formula (4.3) is applied  for  clear sky 
conditions only. The  amount of Fa,  is considerably altered 
by  the presence of clouds in the atmosphere. In  the first 
version of our model, me will  consider neither the effects of 
clouds  nor the absorption of solar insolation by  atmos- 
pheric gases other  than water vapor. Manabe  and  Strickler 
[23] discussed in detail a way in which those effects are 
taken  into account in  the radiation calculations for gen- 
eral circulation experiments. 

Next, we shall consider the  rate of cooling by infrared 
radiation. Let FT ( z ) ,  Fl ( z ) ,  and T be the  total upward 
and downward infrared  radiation fluxes and  the tempera- 
ture at  the height z under a clear sky.  Then i t  can  be 
shown that 

where T‘ is a dummy variable, T,  is the temperature of 
the earth’s surface, and T ,  denotes the temperature at 
infinity which is assumed to be absolute zero. 

and .- 

(4.10) 

Here pa is the density of the gas  which absorbs radiation. 
Both pressure and  temperature effects  on absorption are 
taken  into account through the use of “reduced”  optical 
depth  as defined by (4.10). Here, B, is the Planck  function; 
T ,  is the t.ransmission function. c is the Stefan-Boltzmann 
constant [1.1696)< 10” gm. cal./(c,m.2 day deg.4)]. v is the 
wave number. 

Elsasser and  Culbertson [8] compiled tables o f  I2 tis tL 

funct~ion of effective optical  path lengths and  temperatwe 
for water vapor, c.arbon  dioxide, and ozone, major absorp- 
tion gases  in the atmosphere. A c,omputer program h&s 
been  completed by Sasamori [42] to evaluate the fluxes 
FT (z) and 3’1 (z)  by a numerical quadrature of equations 
(4.7) and (4.8) utilizing the t4ables  of K tabulat!ed in [SI. 
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The  rate of heating/cooling Qae'due to  the divergence of 
the  net infrared radiation flux can be obtained  from 

(4.11) 

One of the most  important  heat sources in the atmos- 
phere is the  latent  heat released by condensation in  clouds. 
This  heating rate is denoted by Qc in  (2.21). As mentioned 
in the  Introduction, an explicit prediction of the moisture 
field  is avoided. Instead we assume that  the atmosphere is 
completely saturated  by  water  vapor.  Thus,  the release of 
latent  heat will take place  in the region of ascending 
motion and  that heating rate is expressed by 

Qc= --E,Lw -' aq bz (4.12) 

where L is the  latent  heat of condensation (=2.5X1010 
erg  gm."),  ttnd qs  denotes the  saturation specific humidity. 
Since the  actual atmosphere is not  saturated  by water 
vapor, the present procedure may  overestimate the  amount 
of release o f  latent  heat in the model atmosphere. To 
reduce the  rate of condensation, we introduced in  (4.12) 
an  efficiency factor E,, and it is assumed that O<EJil. 
The value of EJ which  is  used  in the  actual computations 
will be discussed in a separate  article. 

5. ENERGY  EQUATIONS 

As an approach to  the  study of the eneigetics of the 
general circulation, it is now customary to resolve the 
field of variables into t.he zonal mean  and  the  departures 
from it. The energy  equations  in the pressure system have 
been  discussed by numerous authors,  but relatively few 
studies  have been made in  the 2-system. In  this section, 
we discuss the energy equations  in  the z-system  following 
a general  outline given by Miller [27] and  van Mieghem 

We define the zonal  average,  denoted by a bar, for any 
~ 5 1 .  

variable A by 

We also introduce, as done by Reynolds [38], the density 
weighted mean,  denoted by A ,  which is defined by 

A -  A 

A=pAlj;, A=A+A', pA'=O. 
- 

(5.2) 

For example, it is shown that  the mean  value of the kinetic 
energy becomes 

IP " Z P  17"' 9 2 + + p v 1 2 .  - (5.3) 

This  relation shows the  partition of the kinetic energy into 
two  types, which will be referred to  as zonal  kinetic  energy 
and  eddy  kinetic energy. 

Vol. 95, No. 7 

The application of the averaging  operator to  the con- 
tinuity equation (2.4) yields 

where 

(5.4) 

(5.5) 

Averaging of the  momentum equations (2.1) and (2.2) 
yields 

(5.6a) 

and 

b 1 b  
dt a cos p b p  

[(p$$+pvl2) cos 

Multiplying (5.6a) by & and (5.6b) by i? and using (5.4), 
we obtain  the zonal kinetic energy  equation  in  the form 

denotes the zonal kinetic energy  per unit volume and 

The first  term of equation (5.7) represents the local rate 
of change in  the zonal kinetic energy per unit volume. The 
second term is the flux of E due  to  the  mean meridional 
circulation. The next  two  terms may be interpreted as 
the flux of eddy stress due  to  the  mean motion. The terms 
on the right-hand side are  the  rate of production (or 
destruction) of kinetic energy of the  mean motion which 
will be discussed later. 

Multiplying (5.4) by gz and using the  hydrostatic equa- 
tion for the zonal mean flow, we obtain  the potential 
energy equation for t.he zonal mean flow in  the  form 
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(5.10) 

where denotes the zonal  potential energy defined by 

P=gj;z. 
- 

(5.11) 

By adding (5.7) and (5.10), we obtain the  equation  for 
the sum of the kinetic and potential energy z+P, which 
will be  referred to as the zonal mechanical energy. 

X[(upu’v’+vpa’2) cos p]+- [upu’w’+vpdw’] A- A- b A-  A- 

a2 

=-C(Z+F,  K’)+G(T, .K+F)+Q*F, (5.12) 
where 

C ( f ,  E+F)=@3-.3. (5.13) 

The  equation for  eddy  kinetic energy can  be  obtained 
by averaging the kinetic energy equation  for the total 
motion  and  subtracting (5.7) from the resulting  equation. 
Here we write the final equation  without going through 
intermediate  steps: 

dK‘ -+v3-(K’$3)+73-(F;)+- - 1 b  
at a coscp &O 

=(?(I, K’)+C(K+F, K’)+rF-f’*F? (5.14) 

where 
KI=4PVI:!  - (5.15) 

denotes the  eddy kinetic  energy and 

(5.16) 

The equation for internal energy I ,  defined by 

I=c,pT, (5.17) 

can be  derived  from the  thermodynamic  equation (2.5) 
together  with (2.4) and (2.9) as follows: 

By applying  the averaging  operator (5.1) to (5.18), we 
obtain  the  internal energy  equation  for  the  zonal  mean 
motion: 

(5.20) 

denotes  the zonal  internal energy. Here  the first two terms 
on the  right-hand side of (5.19) have  already been defined 
by (5.16) and (5.13). 

The sum of equations (5.12),  (5.14), and (5.19) becomes 

d ( X + ~ + ~ ’ + r ) + o t . [ ( X + ~ + K ’ + ~ ~ ) 9 d  at 

1 b A- 
[ {  upu’v’+vpv’2)+z(pu’*v’+pv’3) A- 1-  - 

- 
+~,,pT‘v’ } COS [(u~u w + v ~ v ’ w ’ )  b A-  A- 

+$~U‘~W‘+~U’~W’)+C~~T‘W’]=VV*F+~Q. (5.21) 1 -  - ”- 

In  (5.21) we used the following relationships: 

p= Rp? 

I+jj=(C,+R);P=Y7 
- 

~ ~~ - 
P ~ ) ’ = R ~ ( ? + T ~ ) ~ ~ = R ~ T w  

~,pT’v’ +pv’ =~,pT’v’. 
” - 

If there is no source of energy  and  no  dissipation, then  the 
r&ht- hand side of (5.21) vanishes and the  total energy 
K+P”-$-T+K‘ is conserved in  the closed system. The first 
term on the  left of (5.21) represents  the local rate of change 
of total energy per unit volume. The second term repre- 
sents  the divergence of the  transport of the energy 
(K+P+rf+K’) by  the mean meridional circulation. 
The  rest of the  terms  represent  the divergence of the  trans- 
port of eddy energy by eddy  motion. 

In  (5.14) and (5.21), the  terms (V-F-V-F)  and 9.e 
represent the dissipation of eddy kinetic energy and  the 
zonal mechanical energy, respectively. Therefore, these 
terms must  be negative,  namely 

V.F<$.F<O. 

The energy source function p& must  be positive, since 
V T i s  negative if a steady  state is  maintained. 

The function C(a, a) defined by  (5.9),  (5.13), and (5.16) 
represents the  transformation of energy from  the form of 
energy  indicated by a into  that  by b. Note  that C(a, p) = 
-C(p, a). For example, C(K+P,  K’) denotes the conver- 
sion of the zonal mechanical  energy R+ia into  the eddy 
kinetic energy K’. The function C(I,  K+F) denotes the 
conversion of the zonal internal energy into  the zonal 
mechanical energy. It is difEcult t o  measure this  quantity 
.directly  from  atmospheric data because the eva1,uation of 
divergence is involved. However, as often performed in  the 
computation of the vertical motion  field  (e.g., Panofsky 
[32]), one may use the approximation 

“ 

- A -  

- 

” 

“ 

- 8 aF 
v3. Va=-= 

p &* 
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Thus one  obtains 

Similarly, if one  introduces the approximation 

then one finds 
(5.23) 

For a nearly  adiabatic  lapse  rate,  the  quantity ( R m X  
(b’i;/bz) can  be  approximated by - R(g/r) (F/p). 

Figure 1 shows the scheme of energy transformation. 
In this figure, each of the boxes represents a type of energy. 
These boxes are connected by  the  three  transformation 
functions. The  net heating of the atmosphere p& results in a 
generation of zonal internal energy The zonal mechanical 
energy z+?j and the eddy  kinetic energy K‘ are con- 
tinuously  drained out by  dissipation processes, denoted 
by 9 .  and V7F-q p. 

In  the following we shall  present an estimate of 
the magnitude of the  three transformation  functions 
C*(R+P, K’), C*(z z+F) and C*(f, K’). Here the 
asterisk  indicates the  quantity which  is integrated ver- 
tically  throughout  the  depth of the atmosphere  and  aver- 
aged over the  Northern Hemisphere for a period of several 
months.  This  estimate  is based on many  studies concern- 
ing  the evaluation of energy transformation  functions. 
The  reader  may refer to  a useful review article by  Oort [30]. 
The  quantity C*(%?+F;, K ‘ )  is approximately  identical 
to CK defined by Lorenz [20]. The  dominant  term of 
C*(K+P, K’) is the ” vertical  integral of the first term in 
the expression C(K+P, K’) given by (5.9), and the 
significance and  evaluation of this integral  have been 
discussed by  Kuo [16], Starr [47], Wiii-Nielsen, Brown, 
and  Drake [54], and  others.  From  those data we estimate 
the magnitude of C*(K+P,  K’) t o  be on the order of 
-0.3 watt m.-2 The value is negative so that  the eddies 
supply  kinetic energy to  the zonal flow t o  maintain it 
against  dissipation. Thus we put  the arrow (fig. 1) pointing 
from K’ to E+F indicating the general  direction of the 

” 

“ 

“flow” of energy. - 
” - 

The  terms C*(I, K t )  and C* ( I ,  K+P) correspond to 
those of Ck, and C,, respectively, as defined in [20l. These 
relationships  are 

where y=c,/co 1.4, CE denotes the conversion from  eddy 
available  potential  energy  to  eddy  kinetic  energy,  and Cz 
denotes  the conversion from zonal kinetic  energy to zonal 
available  potential  energy. 

Based on data analyses by Saltzman  and  Fleisher [41], 
Wiin-Nielsen [53], and Krueger,  Winston,  and  Haines [15], 
we estimate  the  magnitude of c*(z K’) to be on the order 

t 
PO 

energy  source 

FIQURE 1.-The scheme of energy  transformation.  The  direction of 
the arrows indicates the ‘‘flow” of energy  based on various 
observational data averaged  over the  Northern Hemisphere and 
over a period of several  months. 

- of 2.5 watt  m.+  This means that  the zonal  internal energy 
I is converted into K’ (as indicated by  the arrow  in fig. 1) 
to  maintain  the  eddy  motions  against  the  dissipation  and 
export of energy to  the zonal ” mechanical  energy.  Concern- 
ing the magnitude of C*(I, K+F), we estimate  that it is 
on the order of -0.25 watt m.-2 This estimate  is  based on 
data analyses by  Starr [46] (based on the  data  by  Starr 
and  White [48]); White  and  Saltzman [51] (over a sector 
covering the  North American continent);  and  Krueger, 
Winston,  and  Haines [15]. This  may imply that  the direc- 
tion ” of conversion C*(?, K+F) is  on the whole from 
K+P to  but with some uncertainty.  The  negative sign 
of Cz is  due to  the presence of the middle-latitude  indirect 
meridional  circulation. The results of numerical calcula- 
tions by Phillips [34], Smagorinsky [43], and  Smagorinsky, 
Manabe,  and Holloway [44] for C, and Cz indicate  a 
reasonably good agreement  with observed data. However, 
the computed  values of C K  by  the above  investigators are 
roughly two to  three times  larger than those observed. 
We shall discuss the results of energetics based on the 
present model in  a  separate  report. 

A remark  should  be  made  about  our  reason  for combin- 
ing and F, and  not discussing the energy  transformation 
between and P.  The second term on the right-hand  side 
of equation (5.7) represents the  rate of work done by  the 
meridional  pressure  force,  and we have  the following 
identity: 

The second term on the right-hand  side of the above  equa- 
tion is C(I,  K+F) as already defined by (5.13). Therefore, 
if we eliminate  the &@a& term  in (5.7) by using (5.24), 
we find that  an energy transformation  function  connecting 

and  Tappears  in  the resulting  equation. On the  other 
hand, if we eliminate the &bF/bz term  in (5.10) using 
(5.24), then we find that an energy transformation  func- 

” 
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tion  connecting and 7 appears in  the resulting  equation. 
This means that  the box of r c a n  be connected either  to 
the box of or that bf depending upon the way in 
which the energy equations are written. In  the present 
discussion we have  avoided  this  arbitrariness by combining 
the two  equations (5.7) and (5.10). 

Another  remark  should  be  made  about our reason  for 
introducing  only the zonal  internal energy 7, and  not 
defining such a quantity as eddy  internal energy. As 
pointed  out by Lorenz [20], the  partition of kinetic energy 
into zonal and  eddy parts  is possible because the kinetic 
energy is the sum of the v'ariance of the wind components. 
A similar analysis of variance of the  temperature field is 
also possible. In atmospheric models such as those dis- 
cussed by Phillips [33, 341 and  Smagorinsky [43], the  static 
stability of the atmosphere  is  treated as a constant  param- 
eter. In such  systems, the variance of the  temperature 
field is  introduced  naturally  in the course of deriving the 
total energy equation  relevant  to the systems.  This  vari- 
ance of temperature  multiplied  by a measure of static 
stability  is  the  available  potential  energy defined in [20]. 
Thus, in  a  system of constant  static  stability,  the reason 
for partitioning the available  potential  energy  into the 
corresponding zonal and  eddy parts is  evident.  However, 
in a case in which the  static  stability is not  constant, such 
as the one discussed in  this  paper,  introduction of tem- 
perature  variance  is  not  required to derive the  total energy 
equation.  Thus,  in the zonally  averaged total energy  equa- 
tion (5.21), a term corresponding to  eddy  available  poten- 
tial energy does not  appear. Of course, one can  introduce 
the concept of available  potential energy to  derive  a new 
total energy equation  in the z-system. We plan to do  this 
in  the  future following a line  somewhat  similar to  van 
Mieghem's [26]. 

6. LINEAR ANALYSIS 
As demonstrated  by  Charney [4], a gross feature of the 

atmospheric  general  circulation  can be studied  by an 
analysis of a linearized version of the relevant  system of 
atmospheric  equations  together  with the use of energy 
balance  relationships. Since our model is somewhat differ- 
ent from  those extensively studied, it is useful to  present 
an  analysis of a linearized version of our model. 

In order to simplify the mathematical treatment, we 
adopt  the  @-plane  approximation [36] by  taking  the two 
space  variables z and y as Cartesian  coordinates  directed 
toward the east  and the  north.  The Coriolis parameterf  is 
expressed as f=fo+,9y where fo is the value of f at  the 
origin of the y coordinate. We ignore the dissipation and 
heating  terms F and Q. 

We express a steady  state  quantity by a bar placed 
over the symbol of the  quantity.  The basic steady  state 
is described by 

?i=E(y, z),  V=O, z=o, (6.1) 

Differentiating (6.2) with  respect to z and  eliminating 
bp/bz by using (6.3), we obtain 

u=Wz)+u', v=v', w=w', p=F(y, z)+p', p=T(y, z)+p'. 

Substituting (6.5) into (2.1),  (2.2),  (2.10), and (2.13) 
(together with (2.14) and (2.15)) and  then  dropping  quan- 
tities of the second and higher order, we obtain the fol- 
lowing set of linear  equations for the first-order  quantities 
in which the zero-order (steady-state)  quantities E ,  Ti, p, 
etc.,  appear as  coefficients: 

where 

and 
bP' 
bt B'=- at  z=zT.  

The upper  and lower boundary  conditions are 

w'=O at  z=O and z=zT. (6.1 1) 

Since the  perturbation  motions  are  in  hydrostatic 
equilibrium, we have 

1 bp' 
p' = " -. 9 

(6.12) 

We can,  therefore,  eliminate p' from (6.7),  (6.8), and (6.9) 
by using (6.12). However, it turns  out  that  the density 
perturbation  terms  can  be ignored from the system of 

265-240 0-67-2 
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equations  because  the following approximation  holds w' = 0 p: f 
- 
U i  ,F2, y2 " """""""- u v I '  

(6.13) z v  z 
I 

W' 
To prove (6.13), let us  apply the operator L to (6.7) and 
eliminate L[u'] from the resulting  equation using (6.6). u,  , p ,  , T, _ _ _  - - 
The result is 

" -  
u', vu,' AZ 

w '  =o ~ / / / / f ~ ~ ~ f f f / / f / / 1 / / /  p: 1 
LZ(fl'] +Yv' - w' j -"= " 

bz p b x -  P ground 
(6.14) 

The order of magnitude of the first  term I on the right- TWO-LAYER MODEL 
hand  side of (6.14) becomes 

FIGURE 2.-A two-layer model. 
zz f apt I"" 

gHo 7 ax where i=1, 2 and 

by using (6.12) and the approximations L [  ]-Zb[ ]/ax 
and bp'/bz-p'/Ho, where Ho is  the  height of a homo- 
geneous atmosphere.  Therefore, the magnitude of the 
first term on the right-hand  side of (6.14) is smaller than 
that of the  last  term on the left-hand  side of (6.14) by 
the  factor of ?i2/(gHo), which is on the  order of 
Charney [3] has used approximations  similar  to (6.13) 
for his analysis of the  stability of long waves. Thus,  the 
terms of density  perturbation  are ignored altogether  from 
the present  analysis. Also, by employing a  scale  analysis 
presented by Charney [2], it  can  be shown that  the term 
w'3ii/dz in (6.6) can  be neglected for large-scale motion. 

In order to  get some idea how the  set of nonlinear 
equations (2.1),  (2.2),  (2.10), and (2.16) may be  written 
in the form of corresponding finite-difference equations, 
we shall consider the simplest  model of the atmosphere, 
i.e., a  two-layer model. After some judicious  consideration, 
the  perturbation  quantities u', v', p', and w' are placed 
on the atmospheric levels as shown in  figure 2. Here  the 
subscripts T, M ,  and S refer to the  top, middle,  and sur- 
face levels, respectively. The  subscripts 2 and 1 refer to 
the levels at  the (1/2)Az and (3/2)Az heights,  where Az is 
the thickness of either the upper or the lower layer. 

Let us introduce  the following symbols: 

L,[ ]=-+u, " b - a  
at ax (6.17) 

With reference to (6.8), the  perturbation  tendency  equa- 
tions at levels l and 2 may  be  written 

where 

(6.19) 

(6.20) 

Using the boundary  conditions (6.11), equation (6.9) 
may  be expressed in  the following finite difference forms 
at  levels 1 and 2:  

-gAzV.M,-g - V-M,+Bf] (6.21a) A2 
2 

-- 1 [u2 - --fi2722-g ap2 -z- V-M2+B']  (6.21b) AZ 
z ax  

where u= (~j?/$''' is the Laplacian  velocity of sound which 
is treated  as  a  constant,  and  the  quantity G is defined by 
(6.4). 

~ ~ [ m ~ - . f n ~ = - - - - f ~  dP (6.16a) *=A,V.M~+A,V.M~+D (6.22a) bX at 

L,[?a,J+fm*=-"-i, dP (6.16b) *=BlV.M1+B2V.Mz+D at (6.22b) 
d.y 
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s " f" for i=l, 2. P f  
P l+PZ 

(6.23) 

We assume that  the  perturbation  quantities  are propor- 
tional  to exp ik(x-et) where i=d"1, k is the wave num- 
ber,  and c is  the  phase  velocity.  The expressions for mi and 
n., can now be obtained from (6.16) as follows: 

P F f  " C ) P r "  - bpi 
mi= i=1, 2 (6.24a) j z - k 2 ( 5 ~ - ~ ) 2  

"ik(3f-C) -+ikfpt bPf 
by 

1 Z f  = j2--P(iif"C)2 (6.2413) 

We  now make  the following assumptions: 
1 .  All perturbation  quantities  are  independent of y. 
2. Perturbation  motions  are  quasi-geostrophic  in  the 

sense of Charney [3] and  Eady [6]. That is, 

By making use of the above  assumptions,  and  introducing 
the expressions of mf and n, into (6.22), we  obtain two 
equations  for pl and p 2 .  Since the two equations  are 
homogeneous, there  exist  non-trivial  solutions  provided 
that  the phase  velocity c satisfies the following algebraic 
equation : 

Ec2+ Fc+H=O (6.25) 
where 

f2>>k2(i-C)2. 

E=al&-d&, 
F=albz+4+hl&+hzd, ,  
H=blb2"hlh2 

and 
at=l-e*,  i=l, 2 

el=AIIC:, 
e2=&lCf, 
bf=Kf+e,(3f+C'R),  i = l ,  2 
dl=B,/C:,  
d2=AsIC?, 

hf=KrSd,@t+CR),  i=1, 2 

Kl=(Sd+%) Gl/jo,  

Kz= ( S1$-- g?) Gzlfo, 

C1=j0lk1 
cR=-B/P, 

B=bj/by=Rossby  parameter. 

We assume that G=Az where A denotes the vertical 
wind shear which is assumed to  be  a  constant  parameter 
and A>O. Thus, Zl=A(Az/2) and Zz==A(3Az/2). For 
given values of T I ,  pZ, g,  Az, jo, and 0, the coefficients E, 
F, and H of equation (6.25) are  functions of only k ,  the 
wave number, or L=%/k, L being the wavelength,  and 
A the vertical wind shear. We see that for prescribed 
values of L and A there  are  two  solutions of c. When c 
becomes complex, it means that  the perturbation  either 
amplifies or damps  exponentially.  The  exponential  growth 
rate  is expressed by exp (kc$) where ci  is the imaginary 
part of c.  The region of instability  in  the E A  parameter 
domain  is  found by solving (6.25) as shown in figure 3. 
In this computation,  the following numerical  values are 
used for the  parameters: 

j j 8 =  1013.3 mb., g=980 cm. sec.-21 

E=229.7'K., &=6 X lo5 cm., 

TI=268.6'K., latitude=45'. 
- 

The values of surface  pressure ' ; d J  and  temperature 
E and  are  taken  from the US.  Standard Atmosphere 
data.  The values of PI and & are  computed  from the 
joint use of the  hydrostatic equation  and the gas law 
for the  steady  state. In figure 3 the solid lines  in the 
region of instability show the e-folding time  in  days, 
which is defined by  the inverse of kc,. The dashed  line 
shows the line of maximum  instability. The wavelength 
of maximum  instability  appears  around 4500 km. This 
corresponds to a wave number of about six to seven a t  
45' latitude. 

The general  characteristics of the  instability  diagram 
agree with  those of Thompson [49], Phillips [331, and 
others. As suggested by  Kuo's I171 study, the  fact  that 
the  stable domain  appears  in  a short-wave region may 
be due  to  a vertical  truncation  error caused by approxi- 
mation of the vertical structure of the atmosphere by  a 
two-layer  model. The line  for the short-wave  cut-off 
bends  toward  larger  wavelengths  as the vertical wind 
shear increases. Wiin-Nielsen [52] obtained a similar 
result in his baroclinic  stability  analysis of a  two-layer 
model using primitive  equations of large-scale motions. 

The appearance of the  stable region for longer wave- 
lengths is due  to  the stabilizing effect of north-south 

e 
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WAVE  NUMBER AT 45 DEGREES LATITUM 

I 
I 2  3 4 5 6 7 8 9 1 0 1 1  1 2 1 3 1 4  

WAVELENGTH (X IO00 km) 

FIGURE 3.-The domain inside the heavy solid line indicated by 
rn is the  unstable region. The  thin solid lines show the e-folding 
time in days for the growth of unstable waves. The dashed line 
represents a curve  on which the growth rate is  maximum. 

variations of the Coriolis parameter. A similar  stability 
diagram was constructed (but is not shown here) by 
setting /3=0 in  the calculation, but making  no  other 
changes. It was found that again a  stable region appears 
in  a  short-wave region, but  the  instability domain has 
no  upper  limit  in a  manner similar to  that discussed by 
Eady [6]. In  the case P # O ,  the short-wave cut-off appears 
at  about 2500-3000 km., whereas in the case /3=0, the 
short-wave cut-off appears a t  about 3500-4000 km. This 
indicates that  the variation of the Coriolis parameter 

has a  destabilizing effectbin the short-wave regime, as 
pointed out  by Green [12]. 

I n  this calculation, we assumed westerlies as  the basic 
zonal flow. However,  a  similar stability  diagram was 
constructed  (but  not shown here) by assuming that 
Z2=A(Az/2) and T&=-?i2 in  the model, but making  no 
other changes. In  this case, the lower basic flow is easterly 
and  the  upper one is westerly, and  the average of the  two 
vanishes. The short-wave cut-off appears, in this case, 
at 1500-2000 km. in  wavelength  and the maximum in- 
stability  appears a t  approximately 2500 km. These re- 
sults turn  out  to  be very  similar to those  obtained by 
Fj@rtoft [9]. Since the  stability characteristics of the 
present model are  in good agreement  with  those  obtained 
by previous  investigators, we feel that  the present fonnu- 
lation  for  the  linear two-layer version of our model is 
applicable to  the finitedifference  formulation  for the fu l l  
nonlinear  equations. 

7. REMARKS 
A test of this model was  performed with  a two-layer 

version of the model  using  a  vertical  spacing of 6 km. The 
grid network covers the  entire globe with a horizontal 
spacing of 5' in  both longitude and  latitude.  Near  the 
poles the grid is coarsened in  the longitudinal  direction 
in order to keep the geographical  distances  more uniform. 
Finite-difference equations for the model are formulated 
based  on a modified version of the two-step Lax-Wendroff 
scheme  proposed by Richtmyer [40]. A time step of 5  min. 
was used. 

The effect of continentality is reflected in  the distribu- 
tion of sea level temperature, which is prescribed in  the 
input  data,  but  orography  is ignored. An isothermal at- 
mosphere of 250' K. is used as  the  initial condition. The 
sea level temperature  and  the declination of the  sun  are 
prescribed for mean  January conditions.  Typical  Highs 
and Lows are  generated  after  approximately 30-40 days, 
resulting  from  baroclinic  instability. 

At present many long-term  (over 100 days)  numerical 
integrations  are  being  made on the  CDC 6600 by changing 
the  magnitudes of various  physical  parameters within 
their  reasonable  ranges. It is important  to change only one 
parameter a t  a  time  to see the response of varying  the 
parameters of the model. The results of integrations  are 
compared  with the climatological data of the atmosphere. 
Comparison data include  zonal  mean  distribution of wind 
velocity components, temperature,  and pressure in a me- 
ridional cross section,  etc.  Details of the finite-difference 
methods  and  the  results of numerical  calculations will  be 
described in a separate  report. 
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